This is a frequently asked questions when healthcare centers
are starting the process to budget for the purchase of a new or refurbished
Linear Accelerator. It is important to
not be surprised when it comes to financial obligations within a medical organization. The answer is Yes, there is a cost to have
old LINAC systems removed from your
facility. There is a cost to have new
equipment installed as well but that is often combined with the price you pay
for the equipment itself.
Although linear accelerators are a machine that offers a priceless treatment in the fight against cancer with lifesaving radiation beams treating thousands of patients for countless number of years, they do become worthless. Like most machines, over time the labor and linear accelerator parts cost more to repair the LINAC machine than it is worth. When this occurs, the machine is worth nothing and needs not only to be removed but also properly disposed of.
Another element to
add to the mix is the introduction of new technology. This is a reoccurring issue that is seen in
medical equipment. Older machines cannot
be updated to run properly with the latest and greatest treatments and
therefore simple become worthless. Yep,
even some LINAC machines with life left in them become obsolete to healthcare
providers promoting the latest and greatest treatments. Although these machines are worthless to
these facilities they can often be moved and utilized by other facilities such
as veterinarians, possible dermatologists, and of course in poverty-stricken
locations that would otherwise go without.
When a linear accelerator has been deemed to have little to know value, meaning no one is willing to pay you for it, your facility will face the cost of removal. This cost includes professional and safe dismantling, removal, and disposal of the LINAC. This process often requires the system to be loaded onto a crane as they weigh several thousand pounds. This should be done by professionals to prevent catastrophe. After the machine has been removed from the facility it will be tested for radioactivity and disposed of once they are cleared.
At the end of the day, when all is said and done the cost to
have a large scaled piece of medical equipment such as a linear accelerator
removed, dismantled, and disposed of ranges between $5,000 and $25,000.
Radparts is the world’s largest independent distributor of
OEM replacement parts for Linear Accelerators and Radiation Oncology
equipment. Radparts provides high
quality, user friendly, low cost parts support for linear accelerators and
radiation equipment. More information can be found at https://www.radparts.com/.
DOTmed.com – Elekta Unity MR-linac gains FDA 510(k) clearance The Elekta Unity magnetic resonance radiation therapy (MR/RT) system has gotten its FDA 510(k) premarket notification and is now ready for sale and clinical use in the U.S.
“Since receiving CE mark in June 2018, Elekta Unity has been transforming the care of cancer patients in Europe, and we are excited that this cutting-edge technology is now commercially available to U.S. patients,” Elekta president and CEO Richard Hausmann said in a statement, adding that the Unity will make possible the development of personalized, precision radiation therapy regimens optimized for safety and efficacy.
Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.
The Unity will “make radiation therapy a viable treatment option for more patients,” he added, thanking all involved in the MR-linac consortium and MR technology partner, Royal Philips.
The Unity is designed to simultaneously deliver radiation dose and visualization of tumors and adjacent healthy tissue in the form of high-quality MR images, employing integrated tools for possible treatment adjustments to match current anatomical information in a treatment session.
“Unity is a tremendous leap forward in our ability to tailor radiation therapy to each patient’s tumor and anatomy, and to adapt treatment in real time as the tumor changes shape and position relative to organs at risk,” said Dr. Christopher Schultz, chair of the Elekta MR-linac Consortium.
He called the new technology “fundamentally” transformational in terms of the development and implementation of therapy regimens that will permit clinicians “to achieve optimal outcomes for our patients.”
Back in September, Elekta forecast a net sales compound annual growth rate of 8-10 percent through its 2022/2023 financial year.
“We have improved our margin and cash flow and have returned to high growth. We are now in a good position to realize our vision,” said Hausmann in a statement, noting that “the future of our industry is in precision radiation medicine, including diagnostic quality imaging at the point of treatment, real-time adaptive treatment planning, data-driven personalization and intelligent automation.”
Its predictions follow the company’s recent decision to sell its magnetoencephalography (MEG) business to Croton Healthcare subsidiary York Instruments as part of an initiative to restructure and strategically prioritize its treatment solutions and oncology informatics portfolio, agreements set up between the radiotherapy manufacturer and other parties over the past year.
A trial has shown that radiotherapy is more effective when levels of ropidoxuridine in a patients’ body reach a certain level…
A
new drug designed to make radiotherapy more effective in treating
cancer has been given to patients while they are receiving radiation and
shown to be safe.
The drug, called
5-iodo-2-pyrimidinone-2′-deoxribose (IPdR), or ropidoxuridine, has the
advantage that patients can take it in capsule form, as opposed to
intravenously. When the drug enters the body, researchers believe it
changes into an active form that can make cancer cells more susceptible
to the effects of radiotherapy.
Results of US NCI trial #9882, presented by Dr Timothy Kinsella from the Department of Radiation Oncology at the Warren Alpert Medical School of Brown University and Rhode Island Hospital in the USA, show that the drug has minimal side effects when given to patients with a variety of gastrointestinal cancers during the course of their radiotherapy.
Webinar: Improve ultrapure water system performance and uptime with ozone
Register for our on-demand webinar with
SUEZ which is designed to help companies understand the application and
benefit of ozone technology in ultrapure water systems and how ozone
solutions can improve water system performance, uptime and product
quality in pharmaceutical manufacturing applications.
Dr Kinsella explained: “The aim of my research is to find better ways to treat patients with cancer, and specifically to develop ways to make radiation treatment safer and more effective.
“Previous
research found a promising compound called iododeoxyuridine, or IUdR,
that worked very well to improve the effectiveness of radiotherapy, but
IUdR could only be given intravenously and proved to have many side
effects for patients.
“As a result, this new drug, IPdR, was
developed. It’s a prodrug that can be taken as a capsule and, once
inside the body, it’s converted into the active drug, IUdR.
“This
trial is the first to test it out in patients while they are receiving
radiation therapy, and the results suggest that it’s safe with minimal
side effects.”
Dr Kinsella and his colleagues tested the new drug
in a group of 18 patients with advanced cancers including oesophageal,
pancreatic, liver, bile duct, rectal and anal cancers. All had been
referred for palliative radiotherapy.
Alongside their
radiotherapy, patients were given a daily dose of the IPdR prodrug over
28 days. They were given blood tests to check on the levels of both the
IPdR prodrug and the active IUdR drug at various points during their
treatment. The dose of the prodrug was gradually increased, and patients
were monitored for side effects.
Results of the trial suggest
that IPdR can be safely given to patients up to a dose of 1200mg per day
for 28 days without causing serious side effects. The results also
suggest that this dose creates levels of the active IUdR drug in
patients’ blood that are high enough to have a radiosensitising effect.
Of
the 18 patients on the trial, 14 could be assessed for any effect on
their tumours with a CT or MRI scan 54 days after beginning the
treatment. Among these patients, one had a complete response
(disappearance of tumour), three showed a partial response (at least 30
percent reduction in the tumour targeted by radiotherapy), nine had
stable diseases (no growth in the tumour) and one patient stopped
treatment because of an infection and had progressive disease (at least
20 percent growth in the tumour).
Dr Kinsella added: “This
clinical trial showed that when patients take IPdR at home before coming
for radiation treatment, the level of IUdR in their bloodstream is high
enough to make radiation more effective at killing cancer cells. It
also showed that the dose of IPdR needed to achieve therapeutic levels
of IUdR in the blood causes minimal side effects.
“However, this
trial was with patients who had recurrent cancer and had already
received a number of other cancer treatments. In newly diagnosed
patients, it could be that we can safely use a higher dose and have a
bigger effect on tumours.”
Dr Kinsella and his colleagues are
already studying the effects of IPdR in patients receiving whole brain
radiotherapy for cancer that has spread to the brain. Following this
trial, plans are in progress to study the drug in patients who have been
newly diagnosed with glioblastoma, an aggressive form of brain cancer.
Dr Eric Deutsch, Professor of Radiation Oncology and head of the radiation oncology department and research unit at the Institut Gustave Roussy, Villejuif, France, is a member of the EORTC-NCI-AACR Symposium scientific committee and was not involved with the research. He commented: “Radiotherapy is a vital element in treating many forms of cancer. This research is investigating whether the IPdR drug could make radiotherapy even more effective for more patients.
“In treating cancer
patients, we must always consider the risks and benefits of any therapy.
In this study, the risks of the IPdR drug were minimal, and the benefit
was that it can be taken by patients at home. We don’t have enough
evidence yet on whether IPdR can improve patient outcome, but we hope
that this will become clearer as the research continues.”
The research was presented at the 30th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics in Dublin, Ireland.
There are many parts and components that must be considered when servicing and repairing linear accelerators and other types of radiation therapy equipment. Consider the inner workings of LINAC systems and the process they go through to deliver targeted radiation and you will see why professional servicing and maintenance is required.
External radiotherapy is done with the use of specialized radiation therapy equipment. This equipment is designed to aim beams of radiation at the source of cancer. The most common types of radiation being through the use of high energy x-ray beams. Other types can include particle beams, such as protons and electrons. These beams are used to obliterate the cancerous cells within the are being treated while preventing radiation damage to healthy cells.
Radiotherapy works by harming the DNA within the cancerous cells. The DNA is the genetic code which controls the behavior of the cells. Radiotherapy damages DNA directly on contact or creates charged up particles to damage the DNA. This treatment should stop the growth or kill the cancer. When cells die your body will break them down and get rid of waste substance. Normal cells could be damaged but usually repair themselves.
Before treatment can begin your doctor will want to go over the short- and long-term side effects. Most will be temporary and can be regulated with medication. The team that treats you will use a combination of images including x-rays, CT scans, MRI scans, or PET scans. They will be used to monitor the size of the tumor and measure the shrinkage that is occurring.
Radiotherapy machines, like linear accelerators, are very large and can look extremely intimidating. A LINAC uses electricity in creating radiotherapy beams. The machine will never touch you and the radiation will not be felt. Some discomfort can be expected from the side effects of treatment but can be controlled using medication. For radiotherapy to work the radiation must cover the entire cancerous area and the surrounding border. Physicians will give the lowest dosage possible to prevent damage to the health tissue surrounding the cancer. This will reduce the risks of side effects to the healthy tissue.
The dose of radiation you are prescribed will be divide up into small doses known as fractions. Instead of one large dose, these smaller doses allow the same amount of radiation overtime which helps to alleviate the side effects and allows the healthy tissues time between treatments to heal. Radiation can be given as palliative care which is given to alleviate the pain associated with cancer or as a treatment to cure the cancer.
Radparts is the world’s largest independent distributor of OEM replacement parts for Linear Accelerators and Radiation Oncology equipment. Radparts provides high quality, user friendly, low cost parts support for linear accelerators and radiation equipment. More information can be found at https://www.radparts.com/.
Upgrade time already? It would seem so: three years since its last refit, CERN’s Large Hadron Collider (LHC) is taking a two-year break so boffins can embark on another.
In 2015, the LHC hit 13 tera-electron volts (TeV), and part of this upgrade cycle will take it to its original design energy of 14 TeV. The scientists will also lay the groundwork for another upgrade, the High-Luminosity LHC, due in 2026, which will smash together at least five times more protons than the current configuration.
LHC finds a new and very charming particle: the Xicc++ baryon
READ MORE
Between now and the 2021 restart, the accelerators that feed protons into the LHC will be upgraded to produce more intense beams, with the Linac4 linear accelerator replacing Linac2.
CERN explained: “The new linear accelerator will accelerate H− ions, which are later stripped to protons, allowing the preparation of brighter beams.”
That’s just the first accelerator. The second, the Proton Synchrotron Booster, will get new injection and acceleration systems, and the last injector in the chain, the Super Proton Synchrotron (SPS), will get an RF power upgrade “to accelerate higher beam intensities, and will be connected to upgraded transfer lines”.
Detector upgrades are also on the cards. The LHCb experiment will be replaced with faster detectors, which CERN said will “enable the collaboration to record events at the full proton-proton rate”, and the ALICE experiment will have its tracking detectors upgraded.
With 300PB of data on tape from previous runs, physicists won’t get a rest during the shutdown: they’ll be heating up CPUs by the tens of thousands looking for possible “new physics” signatures, a search that will help guide thinking when the high luminosity experiments start in 2026. ®
In our first installment on treating cancer with radiation we took a look in to exactly what radiation therapy was, how it worked, and how treatment is planned and delivered. In today’s installment we will look deeper into what patients can and cannot doing during treatment, how long treatment sessions take, what to expect, and potential side effects.
During treatment are there particular things I should or shouldn’t do?
It is hard to believe however, life as normal can continue while you receive radiation therapy. In fact, the less interruption to your overall schedule, the better. Try to think of radiation as you would any other appointment, don’t make it any more important than any other task in your daily life. Taking the importance away helps to ease anxiety. Consider the following when planning treatment:
Radiation therapy is performed using a linear accelerator. Some Skin tumors require a superficial x-ray unit, however for the most part radiation is delivered using a LINAC system. You will be required to lay still while on the table/couch underneath the linear accelerator while the treatment is occurring. You will feel nothing at all during the procedure. Many times, you don’t even know that treatment has occurred. A myth has circulated that you will be radio active after radiation therapy however this is incorrect. There is not a possibility of this at all.
Treatment can range from a single treatment, one time to multiple treatments a week for several weeks. This depends on a number of different factors including the type of cancer, where it is located, and how it is responding to treatment. Treatment is most often done during the week. The duration of your session will vary as well depending on the LINAC system that is used, and duration set in your treatment plan. Certain linear accelerators operate faster than others and certain cancers require slow and steady treatment. Your radiation oncologist will go over your specific case when reviewing your treatment plan.
During treatment it is important to drink plenty of fluids while eating regularly. A small, balanced meal several times a day will help with energy loss. It is also important to keep up on your regular, daily hygiene regimen. Try to avoid extreme foods of any nature, too spicy, too hot, too cold, and so on are not desirable when receiving treatment. It is also important to avoid extreme sun exposure during radiation as your skin will be more sensitive to burns.
What side effects should I be prepared for?
Radiation therapy provides a localized treatment which means that any side effect will depend on where it is received. You may experience the following:
Nausea: Depending on where treatment is given you may feel nauseous during or after treatment. (This could also be nerves) Whatever the case symptoms can easily be treated with the use of anti-nausea medication.
Diarrhea: As with nausea, diarrhea can be treated with medicine. Depending on severity a dietician can help prepare your diet to prevent future occurrences.
Sore Throat/Mouth: If you are having treatment done on your mouth or throat you can experience some tenderness. Your oncologist will offer suggestions to help prevent chewing and swallowing difficulties.
Increased Urination: Treatment in the lower abdomen and pelvic region can lead to frequently needing to relieve yourself. To prevent discomfort be sure to stay well hydrated by drinking extra water throughout the day. Take note of drastic changes which could be signally an infection verse side effects from treatment.
Hair Loss: This too is localized to the treatment area. Hair loss may occur on your chest, arms, legs, face, and head depending on where the radiation treatment is performed.
Can I continue to work?
As stated earlier, keeping your routine as normal is possible is key. Of course, each treatment plan is different, and your oncologist may recommend rest after treatment. If this is the case, you will want to follow their specific instructions. Once treatment is finished any side effects and symptoms should subside within a few weeks.
Will I need to follow up?
After radiation therapy is performed you will need to follow up with your physician. In most cases, the first time you meet after treatment will be between four and six weeks. This is not true in all cases and therefore it is important to work with your doctor to make these arrangements at the time of or before your last treatment of radiation.
Radparts is the world’s largest independent distributor of OEM replacement parts for Linear Accelerators and Radiation Oncology equipment. Radparts provides high quality, user friendly, low cost parts support for linear accelerators and radiation equipment. More information can be found at https://www.radparts.com/.
Bronwyn, 7, was the first patient to receive on of the toy linacs from Jill Scott, Superintendent Radiographer (left) and Maureen Houston, Senior Play Specialist (right)
Ulcerative colitis?
If you have active moderate-to-severe UC, we are conducting a research study
CHILDREN who require radiotherapy cancer treatment are being helped through the trauma by simple toy bricks.
Glasgow’s Beatson has been gifted 100 sets of bricks which when built, create a model of a linear accelerator machine, which delivers radiotherapy treatment.
Medics say the kits helps take the fear out of the treatment and encourages young patients to ask questions and raise any fears or concerns.
After the treatment is over, children are encouraged to build something new as part of the transition to a ‘normal’ life.
The Beatson West of Scotland Cancer Centre (BWOSCC) is one of the first in Scotland to receive a donation of 100 models from The Institute of Physics and Engineering in Medicine (IPEM) in York.
Jill Scott, Superintendent Radiographer at the BWOSCC, said: “The little linac is a novel and fun way of showing children and their families what our treatment machines look like and demonstrates how the linac moves and works.
“They also enable the children to play and talk about any concerns they may have regarding radiotherapy.”
The ‘Little Linac’ project was the brainchild of Professor David Brettle, Head of Medical Physics and Engineering at Leeds Teaching Hospitals NHS Trust.
He said: “Toy bricks are every child’s favourite toy and are an ideal way to educate young patients about their treatment in a way that is designed to reduce their stress and anxiety, and so contribute to successful treatment sessions.
“After their treatment is over, the challenge to the children is to use the bricks to make something very different: a rocket, a rabbit, a robot, as part of their transition back to a more normal life.”
Original Source: https://www.eveningtimes.co.uk/news/17229096.glasgow-cancer-centre-easing-trauma-for-children-with-toy-bricks/
Radiation therapy is one of the most common ways to treat cancer. Depending on the type and nature of cancer being treated will depend on what method radiation is delivered to your tumor. Most commonly, a linear accelerator is used to deliver external beam therapy. LINAC machines deliver radiation directly to your tumor, externally.
How does radiation therapy work?
When radiation is delivered using a linear accelerator it is delivered to both cancerous cells and healthy cells. Radiation affects cancerous cells more than healthy cells. The highest possible dose of radiation is delivered to kill off the cancerous cells. Smaller doses can be delivered when the aim of treatment is to reduce the size of the cancerous tumor and relieve the symptoms.
Who plans and delivers your treatment?
Cancer oncologists will create a plan of treatment for patients. When the treatment that is planned requires radiation, a radiation oncologist will oversee the treatment and delivery of radiation. A team of cancer experts including nurses, specialists, counselors, dieticians, and assistants will help guide you throughout your treatment.
How is your treatment planned?
All cancer treatments are designed with the patient, the type of, and size of cancer. Radiation therapy is no different. Before radiation treatment is given patients will visit the facility to go over the plan of treatment that has been designed specifically for them. Radiation oncologists and radiation therapists will develop a plan based on x-rays and scans from simulators. Marks are then placed in strategic locations to pin point the areas to be treated. These marks will be placed each and every visit as the cancerous tumor changes. For cancers that are in the head, a guidance mask is created from a mold of the patients heads and is used to stabilize and pin point treatment due to the sensitivity of the area.
Does radiation therapy require hospitalization?
Radiation therapy is most often done on an outpatient basis however in some situations your radiation oncologist may recommend that you be admitted if they think it would enhance the success of your treatment. This is rare and usually does not occur as long as you are able to travel to and from the hospital for treatment.
What tests are performed in conjunction with radiation therapy?
Over the course of radiation treatment your oncologist will want to perform a number of follow up scans and x-rays to make sure the cancer is reacting to the radiation as expected. Occasionally additional lab work is required and is considered normal and nothing to worry about.
In our next installment on radiation therapy we will look deeper into what you can and cannot do during treatment and ways to combat side effects and more.
Radparts is the world’s largest independent distributor of OEM replacement parts for Linear Accelerators and Radiation Oncology equipment. Radparts provides high quality, user friendly, low cost parts support for linear accelerators and radiation equipment. More information can be found at https://www.radparts.com/.
Scientists have recreated the conditions within stars and planets on Earth. They reached a whopping 36 million degrees which is 10 million degrees hotter than the center of the Sun. Creating these conditions could help us understand more about the conditions found in astrophysical objects but also have applications in fusion energy and medicine.
The experiments were carried out at the Department of Energy’s SLAC National Accelerator Laboratory in California. SLAC is home to the world’s longest linear particle accelerator which feeds into a large x-ray laser. The x-ray laser then leads into seven experimental hutches, where the conditions found at the center of the Sun were created in the last hutch known as MEC which stands for Matter under Extreme Conditions. At MEC, high power lasers are used to zap pieces of metal until they vaporize into a plasma. Plasma is the fourth state of matter that the Sun is made of. You can think of a plasma as a hot gas. So hot in fact that atoms cannot exist, instead, the electrons are stripped away from their atoms. As a result, a ‘soup’ of ions and electrons exist. With these experiments, scientists can not only learn more about the interiors of stars but also help make particle accelerators using plasma which could help with cancer treatment.
The central vacuum chamber at MEC at SLAC which is home to some of the hottest substances on Earth. With high power lasers, scientists at MEC can help recreate the conditions found in the interiors of suns and planets.SLAC
Using the x-ray laser at SLAC, the team of scientists could take snapshots of how the laser-made plasma evolved over quadrillionths of a second. The snapshots could reveal small instabilities within the plasma. The work was reported in Physical Review X last month, and features the experiments carried out at SLAC with a collaboration with scientists from Helmholtz-Zentrum Dresden-Rossendorf research center in Germany as well as other institutions.
When the metal is shot with the laser, not only is plasma produced, but also a stream of protons. These protons can be used for proton therapy, a form of cancer treatment that is gentler than commonly used radiation therapy. The main difference between proton and radiation therapy is that charged particles are used rather than x-rays. Cancer treatment in this form have smaller footprints than the machines used for radiation therapy. Having these in hospitals will be highly advantageous.
Other applications of analyzing the laser-made plasmas are learning more about high-energy cosmic rays which are commonplace in our cosmos. They include highly energetic particles which can come out as jets from the hearts of active galaxies. Seeing how the plasma behaves could give scientists an idea of how plasma instabilities could produce cosmic rays.
There are a number of factors that hospitals, medical facilities, and healthcare organizations must consider before they replace equipment besides age. Each year companies could potentially waste thousands of assets by focusing solely on the age of their equipment.
It wasn’t long ago that healthcare facilities were zealous to add all of the latest surgical equipment to their organization. From robotic surgery systems, linear accelerators, and other large scaled medical equipment were installed to keep physicians happy and be competitive.
However, in recent years budgets have gotten smaller and funds have become more restricted and facilities are seeing that equipment can’t just be discarded on a whim or purchased without advanced planning. Instead equipment needs to be repaired or refurbished and kept at peak performance for longer and a strategic approach needs to be taken to replace not only large scaled equipment but also universal equipment such as beds, linens, and so forth.
Proactive replacement planning is necessary between financial and clinical leaders within organizations need to work together to plan in order to achieve:
A reduction in expenses associated with service, parts, maintenance, and training
A decrease “close call” events that come with the use of older equipment with more precise maintenance schedules
A reallocation of assets that are underutilized throughout the facility
An ability to cross train employees throughout facility locations
An increase in consistency and standardization throughout facilities
When the above objectives can be achieved, a reduction in costs can occur with an increase in the quality of care patients receive.
Instead of the reactive strategy that medical facilities have embraced in the past more proactive approaches are being embraced. When purchasing new or refurbished medical equipment in a proactive approach allows leaders to embrace the situation over a period of time verse the reactive approach which tends to be more mission critical. Being proactive allows financial leaders in medical facilities to work with clinical leaders to plan for the addition of new equipment whether it is brand new or refurbished. When the replacement of equipment no longer is a life or death situation a better decision for the facility can be made.
Proactive planning in medical facilities allows for better outcomes overall. Financial teams and clinical teams can work together, armed with historical data, to have meaningful conversations instead of hypothetical ones. This allows better decisions to made for everyone throughout the facility from administrators and physicians to patients and care givers.
Radparts is the world’s largest independent distributor of OEM replacement parts for Linear Accelerators and Radiation Oncology equipment. Radparts provides high quality, user friendly, low cost parts support for linear accelerators and radiation equipment. More information can be found at https://www.radparts.com/.